Active Transfer Learning for Cross-System Recommendation
نویسندگان
چکیده
Recommender systems, especially the newly launched ones, have to deal with the data-sparsity issue, where little existing rating information is available. Recently, transfer learning has been proposed to address this problem by leveraging the knowledge from related recommender systems where rich collaborative data are available. However, most previous transfer learning models assume that entity-correspondences across different systems are given as input, which means that for any entity (e.g., a user or an item) in a target system, its corresponding entity in a source system is known. This assumption can hardly be satisfied in real-world scenarios where entity-correspondences across systems are usually unknown, and the cost of identifying them can be expensive. For example, it is extremely difficult to identify whether a user A from Facebook and a user B from Twitter are the same person. In this paper, we propose a framework to construct entity correspondence with limited budget by using active learning to facilitate knowledge transfer across recommender systems. Specifically, for the purpose of maximizing knowledge transfer, we first iteratively select entities in the target system based on our proposed criterion to query their correspondences in the source system. We then plug the actively constructed entity-correspondence mapping into a general transferred collaborative-filtering model to improve recommendation quality. We perform extensive experiments on real world datasets to verify the effectiveness of our proposed framework for this crosssystem recommendation problem.
منابع مشابه
A unified framework of active transfer learning for cross-system recommendation
Article history: Received 8 May 2015 Received in revised form 16 December 2016 Accepted 23 December 2016 Available online 30 December 2016
متن کاملToward Active Learning in Cross-domain Recommender Systems
One of the main challenges in Recommender Systems (RSs) is the New User problem which happens when the system has to generate personalized recommendations for a new user whom the system has no information about. Active Learning tries to solve this problem by acquiring user preference data with the maximum quality, and with the minimum acquisition cost. Although there are variety of works in act...
متن کاملCross-Domain Collaborative Filtering with Review Text
Most existing cross-domain recommendation algorithms focus on modeling ratings, while ignoring review texts. The review text, however, contains rich information, which can be utilized to alleviate data sparsity limitations, and interpret transfer patterns. In this paper, we investigate how to utilize the review text to improve cross-domain collaborative filtering models. The challenge lies in t...
متن کاملCross-domain Novelty Seeking Trait Mining for Sequential Recommendation
Transfer learning has attracted a large amount of interest and research in last decades, and some efforts have been made to build more precise recommendation systems. Most previous transfer recommendation systems assume that the target domain shares the same/similar rating patterns with the auxiliary source domain, which is used to improve the recommendation performance. However, to the best of...
متن کاملAn Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach
Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013